My caption 😄

The Smart Black Box: A Value-Driven High-Bandwidth Automotive Event Data Recorder (T-ITS, submitted)

Abstract

Autonomous vehicles require reliable and resilient sensor suites and ongoing validation through fleet-wide data collection. This paper proposes a Smart Black Box (SBB) to augment traditional low-bandwidth data logging with value-driven high-bandwidth data capture. The SBB caches short-term histories of data as buffers through a deterministic Mealy machine based on data value and similarity. Compression quality for each frame is determined by optimizing the trade-off between value and storage cost. With finite storage, prioritized data recording discards low-value buffers to make room for new data. This paper formulates SBB compression decision making as a constrained multi-objective optimization problem with novel value metrics and filtering. The SBB has been evaluated on a traffic simulator which generates trajectories containing events of interest (EOIs) and corresponding first-person view videos. SBB compression efficiency is assessed by comparing storage requirements with different compression quality levels and event capture ratios. Performance is evaluated by comparing results with a traditional first-in-first-out (FIFO) recording scheme. Deep learning performance on images recorded at different compression levels is evaluated to illustrate the reproducibility of SBB recorded data.

Publication
IEEE Transactions on Intelligent Transportation Systems (Under review)
Date